Чем чистить теплообменник газовой колонки


Как почистить газовую колонку: методы собственноручного обслуживания


Если в доме имеется газовая колонка, однажды возникнет вопрос о ее обслуживании. Теплообменник такого прибора постепенно зарастает известковыми отложениями, а на горелку оседают частички сажи и копоти. Лучше сразу выяснить, как поддерживать оборудование в надлежащем состоянии, чтобы оно не вышло преждевременно из строя.

Мы расскажем, как почистить газовую колонку собственными руками, если вызов представителя поставляющей газ службы необязателен. В представленной нами статье описаны способы удаления нагара и прочих продуктов горения с важных рабочих органов проточного водонагревателя. Даны советы по профилактике образования опасных отложений.

Содержание статьи:

Принцип действия проточного водонагревателя

Газовая колонка – это относительно несложное приспособление для подогрева воды. Сверху расположен теплообменник, подключенный к водопроводной системе. Под ним имеется горелка, которая присоединена к газовой трубе.

Во всех современных моделях розжиг горелки автоматизирован, вручную разжигают только очень старые или неисправные модели. Последние лучше отремонтировать, чтобы не рисковать здоровьем домашних и целостностью имущества.

Конструкция скрыта защитным кожухом, на передней панели которого обычно расположен блок управления. Он регулирует максимальную температуру нагрева воды, количество газа и другие показатели работы прибора. Сверху имеется колпак и дымоходная труба, по которой удаляют продукты горения.

Когда в доме открывают воду, горелка автоматически включается, газ прогревает воду до необходимой температуры. Авторозжиг настроен таким образом, чтобы колонка включалась только при достаточно высоком напоре воды в системе. Еще один важный показатель – наличие хорошей тяги.

Перед началом работ по очистке бытовой газовой колонки нужно познакомиться с устройством прибора, чтобы правильно его разобрать

Процесс нагревания воды сопровождается выпадением жесткого осадка, который постепенно накапливается внутри теплообменника. Трубки забиваются отложениями, в результате качество нагрева ухудшается, работа становится недостаточно эффективной.

Регулярная очистка колонки поможет избежать подобных проблем. Помимо накипи внутри прибора могут собираться и другие загрязнения, все зависит от качества воды.

Бытовая газовая колонка устроена не особенно сложно: вода движется по трубе теплообменника, ее подогревает горелка, розжиг включается автоматически

О том, что колонку пора почистить, говорят следующие признаки:

  • напор из крана с горячей водой значительно слабее, чем струя из холодного крана;
  • напор хороший, но почти сразу после включения колонка гаснет;
  • устройство вообще перестало включаться независимо от напора;
  • наблюдается недостаточный прогрев потока по сравнению с прежним состоянием;
  • вода нагревается до нужной температуры, но слишком медленно.

Некоторые неисправности могут наблюдаться также и при поломке запорного крана, который установлен на входе в колонку. Не помешает сначала проверить его, и лишь после этого приступать к очистке.

Порядок удаления накипи

Чтобы выполнить промывку теплообменника обычной , сначала следует найти вентили, которые перекрывают поступление газа и воды к устройству, а затем повернуть их.

На этом же этапе рекомендуется достать инструкцию по эксплуатации и освежить в памяти сведения об устройстве прибора, а также рекомендации производителя. Это позволит избежать ошибок во время демонтажа.

Чтобы разобрать колонку, понадобятся обычные инструменты, которые есть в распоряжении любого опытного мастера:

  • разводной и трубный ключ;
  • прямая и крестовая отвертки;
  • паронитовые прокладки;
  • шланг длиной не менее полуметра;
  • металлический хомут, чтобы этот шланг зафиксировать.

Шланг присоединяют к выходу из теплообменника и опускают в раковину, чтобы отработанную воду с загрязнениями можно было сливать в канализацию. Если такой возможности нет, придется также запастись достаточно большой емкостью для слива воды. С колонки удаляют защитный кожух. Действовать следует аккуратно, чтобы не сломать панель управления.

Для очистки теплообменника от накипи его обычно демонтируют, а потом снова устанавливают на место, герметизируя резьбовые соединения

Теперь нужно снять фильтр для воды, который обычно фиксируется гайкой. Фильтр в дальнейшем следует промыть и установить на место. Если отложения оказались слишком сложными, рекомендуется использовать химические очистители для удаления загрязнений с сеточки. В процессе промывки могут быть обнаружены повреждения фильтра. В этом случае его лучше заменить.

Теперь нужно отсоединить теплообменник от водопроводных труб, обычно в этих местах используется обычное резьбовое соединение, которое следует просто раскрутить. Теплообменник снимают с петель и переворачивают. Некоторые мастера советуют на время очистки положить его в достаточно просторную емкость, чтобы агрессивные химические вещества не вытекали на пол.

Чтобы качественно промыть теплообменник, его можно поместить в просторную емкость с очистительным средством. Время обработки зависит от инструкции на упаковке

В качестве очистителя можно использовать подходящие средства, например, “Антинакипин”. Подойдет также обычный 9%-ный раствор уксуса и другие бытовые составы. Можно сделать раствор лимонной кислоты: 100 г на один литр воды.

Некоторые имеют положительный опыт удаления накипи с помощью напитков типа “Пепси-Кола” или “Спрайт”, которые содержат ортофосфорную кислоту. Но не стоит использовать для этих целей уксусную эссенцию, она может разъесть стенки труб, придется провести серьезный ремонт.

Теплообменник переворачивают и заливают в него очиститель с помощью резиновой груши или большого шприца. Обычно нужно не менее 500 мл вещества, но не более литра. После этого уксус или лимонную кислоту оставляют внутри примерно на четверть часа. При использовании промышленных очистителей рекомендуется следовать инструкции.

Снимать защитный кожух с газовой колонки нужно аккуратно, чтобы не повредить электронную панель управления и другие элементы прибора

По окончании очистки раствор сливают, а трубы промывают от накопившейся грязи. Для этого вход теплообменника снова подключают к водопроводу, а на выходе ставят емкость, чтобы собрать грязную воду.

Промывку выполняют до появления чистой струи. При наличии серьезных загрязнений однократной процедуры очистки может оказаться недостаточно, ее придется повторить еще раз, используя свежую порцию очистителя.

По завершении работ необходимо собрать колонку в обратном порядке. Теплообменник подключают к водопроводу. При этом резьбовые соединения следует загерметизировать и обработать графитовой смазкой. Все имеющиеся в местах монтажа прокладки нужно сразу же заменить новыми.

Теперь необходимо установить на место промытый фильтр грубой очистки, надеть на устройство кожух и снова подать к колонке газ и воду, отвернув соответствующие вентили. Остается выполнить контрольный пуск воды, чтобы убедиться в том, что колонка работает нормально.

Очистка теплообменника без демонтажа

Существует также способ прочистки теплообменника без его полного демонтажа. Для этого нужно сначала снять с устройства кожух и отсоединить подающую трубу водопровода от теплообменника. Входную медную трубку змеевика следует слегка сместить, чтобы было удобнее работать.

“Антинакипин” считается очень эффективным и безопасным средством для удаления накипи из теплообменника газовой колонки, хотя можно использовать и другие бытовые средства

На выходной патрубок надевают шланг. Затем нужно открыть кран и слить немного воды, около литра, чтобы освободить змеевик от жидкости. Если есть возможность уточнить емкость теплообменника в техническом паспорте , то рекомендуется слить из системы именно такое количество воды или немного больше.

Для очистки колонки этим способом лучше взять порошок “Антинакипин”, который перед использованием разводят горячей водой. Не помешает позаботиться о защите кожи и глаз от случайного воздействия состава, поскольку он содержит соляную кислоту.

Теперь во входную трубу нужно вставить воронку и залить в теплообменник “Антинакипин”. Следует помнить, что при быстрой заливке внутри может начаться реакция, которая приведет к выталкиванию опасного раствора в обратном направлении. Поэтому заливать состав нужно небольшими порциями и тонкой струйкой.

Если в процессе очистки колонки была обнаружена утечка газа, нужно сразу же перекрыть трубу и вызвать мастеров из газового хозяйства

Заправленный раствором теплообменник следует оставить примерно на два часа. Чтобы ускорить процесс очистки, можно включить запальник (газ для этого способа очистки перекрывать не обязательно). Когда процесс закончится, следует открыть кран и слить из колонки воду с растворенным в ней шламом.

Если загрязнений выходит много, а струя демонстрирует хороший напор, чистку можно считать удовлетворительной. Если нет – нужно провести процедуру еще раз, но при использовании “Антинакипина” такая необходимость обычно не возникает.

Этот метод очистки рекомендуется проводить с использованием именно такого очистителя. Применение уксуса или лимонной кислоты в этом случае может плохо отразиться на состоянии алюминиевого редуктора.

Удаление загрязнений от продуктов сгорания

Сажа, копоть и другие твердые продукты сгорания хотя и образуются в таких устройствах в малых количествах, но все же могут стать причиной серьезной поломки.

Если необходимо очистить эту часть устройства, нужно снова вспомнить об инструкции изготовителя, особенно если гарантийный срок еще не истек. Некоторые производители требуют, чтобы такие работы проводились только профессиональными газовщиками.

Удалить копоть и сажу с поверхности теплообменника можно с помощью обычной жесткой щетки, но для прочистка форсунок понадобится металлическая проволока

Проще всего очистить от продуктов горения радиатор колонки. Для этого нужно отключить газ и снять защитный кожух с устройства. После этого поверхность элемента обрабатывают обычным бытовым пылесосом.

Если газ в колонке не загорается, или горит неравномерно и слабо, возможно, имеет место засорение форсунок. Чтобы очистить их от накопившихся слоев копоти используют тонкую проволоку или щетку с ворсом из металла.

Разумеется, и в этом случае следует отключить газ и снять кожух. Очистку нужно выполнять аккуратно, чтобы не повредить элементы устройства.

Когда копоть накапливается слишком быстро, имеет смысл подумать о наличии других неисправностей, провоцирующих эту ситуацию. Распространенная причина такого явления – утечка в местах соединения газовых трубок внутри колонки.

Горелка газовой колонки состоит из узких форсунок. Если они забиты сажей, газ будет поступать неравномерно, вода станет медленнее нагреваться

Щель может быть настолько маленькой, что определить утечку по запаху не удается. При подозрении неисправности этого типа нужно нанести мыльный раствор на места соединений, а затем подать на устройство газ.

Если раствор стал пузыриться, следует прекратить работы, отключить газ и сразу же вызвать опытного газовщика. Самодеятельность на этом этапе может стать фатальной.

Напор воды нормальный, копоть удалена, но колонка все равно не включается? Самое время проверить тягу. В современных моделях обычно имеются специальные датчики, которые фиксируют отсутствие тяги и не позволяют включить прибор, перекрывая поступление газа к устройству розжига.

Для проверки лучше использовать полоски тонкой бумаги. Пламя свечи или зажигалки может оказаться опасным, если проблемы возникли из-за утечки газа.

Если частички сажи и другие продукты сгорания накапливаются в колонке слишком быстро, нужно найти неисправность, которая приводит к такому результату

Обнаружив слабую тягу, необходимо выявить причину возникшей ситуации. Обычно достаточно прочистить дымоход, чтобы восстановить нормальную работу прибора. Если это не помогло, стоит проконсультироваться с инженером по газовому оборудованию, возможно, имеются огрехи, допущенные во время монтажа дымоходной конструкции.

Профилактика образования накипи

Жесткая вода – не единственная причина появления накипи внутри трубок теплообменника. Для ее появления нужны не только соли, которые содержатся в воде, но и высокая температура нагрева. Чем сильнее горит газ, тем интенсивнее выпадает твердый осадок внутри прибора. Критической считается температура в 80 градусов или выше.

Чтобы накипь накапливалась внутри теплообменника как можно медленнее, нужно правильно выставить настройки температуры на панели управления газовой колонки

Очевидно, что такой сильный нагрев для бытового использования не нужен. Для душа достаточно 40-42 градусов, для мытья даже самой грязной посуды хватит и 45 градусов. Автоматическая стиральная машина подогреет воду и до 95 градусов, если это необходимо, но газовая колонка в этом процессе никак не участвует.

Поэтому, если горячую воду постоянно приходится разводить холодной, стоит пересмотреть по температуре нагрева. Некоторые самодеятельные умельцы рассверливают запальник газовой колонки. Это делается для того, чтобы увеличить скорость нагрева потока воды.

В старых моделях такая переделка позволяет избавиться от необходимости разжигать и настраивать прибор при каждом включении. Наконец, рассверленный запальник нужен, чтобы газ загорелся даже при очень слабом напоре потока воды.

В этом случае может возникнуть очень опасная ситуация, когда малое количество воды в теплообменнике закипит и перейдет в газообразную форму. В результате давление в теплообменнике резко повысится и его просто разорвет.

Когда накипь скапливается внутри узкой трубы теплообменника, создается осадок, который препятствует эффективному нагреву и нормальной циркуляции воды

Разумеется, такое вмешательство газовщики считают опасным, а производители отказываются выполнять гарантийные обязательства для приборов с подобными переделками. Чтобы улучшить , можно подобрать и поставить обычный или . И качество водоснабжения улучшится, и приборы не пострадают.

Выводы и полезное видео по теме

Интересный вариант промывки газовой колонки можно посмотреть в этом материале:

Здесь продемонстрирована процедура очистки теплообменника без демонтажа:

В этом ролике показан интересный эксперимент по растворению накипи в электролите, лимонной кислоте и уксусе. Хотя нужно учитывать не только воздействие химии на жесткий осадок, но и на материал, из которого сделан теплообменник:

Любая газовая колонка нуждается в периодической очистке. Если техническое обслуживание выполнено правильно, прибор будет работать долго и эффективно.

Хотите рассказать о том, как собственноручно чистили газовый проточный водонагреватель? Располагаете информацией по теме статьи, которая будет полезна посетителям сайта? Пишите, пожалуйста, комментарии в расположенном ниже блоке, задавайте вопросы и размещайте фото по теме статьи.

Как почистить газовую колонку: 3 проверенных способа

Чтобы обеспечить для своего дома или квартиры регулярную подачу горячей воды, многие хозяева устанавливают на кухне газовую колонку. Прибор компактный, не занимает много места на стене, а с принципом работы разберется даже подросток.

Подобное водонагревательное оборудование прослужит своему владельцу «верой и правдой» не один десяток лет, но только при условии правильной эксплуатации и периодической чистки. Как же промыть и почистить газовую колонку своими руками в домашних условиях (например, модель Zanussi GWH 10 Fonte Glass Rialto)? Подробная информация приведена в статье.

Читайте также: Основные причины неисправности газовой колонки: 6 поломок, которые можно отремонтировать своими руками

Почему засоряются «внутренности» газовой колонки?

Причина таких загрязнений кроется в принципе работы устройства. Прибор греет воду с помощью газа, а потому скоплений сажи и нагара не избежать. Кроме того, очень часто загрязняется сам зажигательный элемент, собирая на своем фитиле копоть.

Но настоящий апокалипсис наступает, когда в трубах водонагревателя «поселяется» накипь. Она не только препятствует нормальной работе оборудования, но может и вовсе вывести его из строя, полностью забив собой водопроводную часть. Особенно опасно появление накипи в теплообменнике.

Теплообменник представляет из себя коллекцию трубок, размещенных над газовой горелкой. По ним постоянно и беспрепятственно должна течь вода, именно в них она равномерно нагревается. Когда в этих трубках накапливается накипь, наступают перебои с подачей горячей воды. 

Возможно, вам будет интересно: 9 важных вопросов при выборе газовой колонки

Настало время чистки: первые признаки

Определить, что газовая колонка (например, фирмы Bosch) нуждается в чистке, можно по 4 характерным признакам:

  1. Прибор перестал включаться или часто тухнет во время работы. Когда есть 100% уверенность, что газ в колонку подается бесперебойно, а вода поступает со стабильным напором, причиной для таких самостоятельных отключений может быть чрезмерное количество гари на зажигательном элементе. Устранить проблему получится только чисткой горелки.
  2. Активируется тепловая защита прибора. Чтобы колонка не перегревалась, в оборудовании предусмотрен тепловой датчик. Он сигнализирует о повышении температуры, предупреждая владельца о неисправности. При частом срабатывании этого датчика стоит прочистить трубы от накипи. Поскольку накипь обладает хорошей теплоизоляцией, она мешает нормальному охлаждению прибора.
  3. Без видимых причин снизилась продуктивность устройства. Если вода начала медленнее нагреваться или существенно упал уровень напора, нужно проверить теплообменник на наличие накипи и вычистить скопившиеся продукты деятельности колонки.

Итак, с загрязнениями прибора понятно, а как же почистить газовую колонку от накипи и сажи, когда такая необходимость возникла? Ответы – в следующих разделах статьи.

Средства для очистки газовой колонки

Правила ухода за газовой колонкой подробно описаны в инструкции к прибору и отступать от этих требований может быть опасно. Если вдруг водонагреватель засорился, использовать для его чистки необходимо только средства, рекомендованные производителем. О них также должно быть указано в соответствующих пунктах мануала по эксплуатации. И доверить процесс чистки лучше профессионалам. В таком случае не только устранится засор, но и будет сохранена гарантия.

Важно! Самовольная читка несанкционированными средствами опасна для здоровья! Если в процессе удаления накипи или гари поврежден один из элементов колонки и появилась утечка газа, нужно немедленно звонить 104.

Только в том случае, если пользователь понимает все возможные последствия и принимает на себя ответственность, почистить прибор можно и самому. Чем же и как промыть газовую колонку (например, бренда Ariston) от накипи в таком случае? Можно применять и готовые препараты или народные методы. Что лучше и эффективнее: «ядреная» химия или «бабушкина» очистка, покажет сравнительная таблица:

Решает проблему

Народное средство Химический препарат
Накипь внутри теплообменника Смесь из 0,5 л горячей воды и 100 г лимонной кислоты. Calgon или Антинакипин (разъедает слои накипи внутри труб).
Плотный слой нагара (можно удалять только с теплообменника, чистку газовой части выполняют специалисты) Развести столовый уксус и теплую воду в соотношении 1:3. Можно использовать 7-10% соляную кислоту или другую сильную химию. Важно! Работа требует аккуратности: средство ни в коем случае не должно попасть на кожу или слизистую.

Читайте также: ТОП-5 лучших производителей газовых колонок

3 способа чистки газовой духовки

В инструкции к газовым водонагревателям четко прописано, что самовольная очистка может привести к поломке или, что хуже, утечке газа. Этим правилам эксплуатации нужно следовать. Даже если сохранение гарантии не столь важно, безопасность – в приоритете. Стоит помнить, что в любом случае самостоятельно в приборе можно только удалить накипь с теплообменника и отмыть сажу с поверхности горелки. 

В помощь владельцам газовых колонок предлагается мануал из трех пунктов, которые в комплексе помогут решить главные проблемы с перебоями в водонагревателе.

Удаление накипи: порядок работ

Для проведения такой манипуляции можно использовать как народные средства, так и химические растворы. Отдав свой голос в пользу химии, необходимо в точности следовать инструкции. Если же выбирать лимонную кислоту или уксус, то работа состоит из следующих этапов:

  • отключается газовая колонка;
  • теплообменник отключается руками от остальных элементов и снимается со стены, из него сливается вода;
  • одновременно подключают к трубе, которая подает воду в колонку, шланг, чтобы избежать протечек;
  • грушей, шприцом или лейкой в трубы теплообменника заливается полученный раствор;
  • теперь корпус теплообменника опускается в глубокий таз с этой же смесью и оставляется в таком состоянии на несколько часов или ночь.

После этого деталь необходимо хорошо промыть под проточной водой, подключить обратно к колонке (как вариант, колонке модели Ariston FAST R ONM) и после этого запустить прибор. Вода под давлением уберет всю накипь, сделав трубы идеально чистыми. 

Нюанс: Проверить эффективность своей работы легко – достаточно посмотреть на цвет воды: если она прозрачная, значит вся накипь вышла.

Всем, кто мечтает о новом приборе, будет интересно почитать: Замена старой газовой колонки на новую: 5 важных пунктов 

Можно ли почистить теплообменник без демонтажа?

Сразу ответ: «Да, можно». Для этого необходимо снять переднюю защитную панель и отсоединить теплообменник от трубы, которая подает воду в газовую колонку. На ее место подключается шланг для слива. 

Когда эти подготовительные процедуры будут выполнены, берется любое химическое средство (или народный состав, по желанию) и заливается в трубы теплообменника через входное отверстие. Заполнять «внутренности» стоит не спеша, тонкой струйкой, чтобы избежать резкой реакции и выталкивания средства обратно.

В таком виде прибор оставляют на 2-3 часа. По истечению времени нужно заново подключить шланг и слить отработанную воду с накипью и остальными нечистотами. После чего включить колонку и проверить ее работу.

Удаление сажи и копоти

Чистку газовой колонки (например, модели Bosch Therm 4000 O WR) от продуктов сгорания, как и от накипи, лучше доверить профессионалам, особенно когда прибор на гарантии. Самостоятельно можно убрать только сажу с поверхности деталей, не разбирая газовую часть. Как это сделать? Процесс занимает 10-15 минут и состоит из таких этапов:

  • отключается подача газа и снимается верхний корпус;
  • все внутренние элементы аккуратно протираются тряпкой или чистятся пылесосом;
  • кожух устанавливается назад и проверяется работоспособность устройства.

Если начал гореть слабо газовый фитиль – значит, засорилась форсунка. Находится она на газовом коллекторе, рядом с датчиком давления. Почистить форсунку можно обычной тонкой проволокой и жесткой щеткой. По завершению работы обязательно проверить элемент на утечку газа. Для этого нужно смазать горелку мыльным раствором (при утечке появляются пузыри).

Лучше профилактика, чем чистка

Профилактика необходима, чтобы предотвратить накипь, которая выступает главным бичом газовых колонок (например, таких, как колонки Zanussi). Она появляется не только в результате отложения солей от жесткой воды, но также и постоянной высокой температуры в приборе. Чтобы трубы засорялись этой «гадостью» как можно меньше, необходимо выставить оптимальный температурный режим.

Еще один способ предотвращения накипи – установка фильтров для очистки воды или электросмягчителей. Они не пропускают вредные соли, позволяя трубам теплообменника служить дольше. Однако за чистотой фильтра и электросмягчителя также необходимо следить.

Возможно, вам будет интересно: ТОП-10 газовых колонок 2017 года

В заключение

Зная, как почистить теплообменник газовой колонки и периодически выполняя изложенные в статье рекомендации, получится существенно продлить срок ее службы. А это, в свою очередь, гарантирует постоянную подачу горячей воды для нужд всей семьи и экономию средств на дорогостоящие ремонты в сервисном центре.

Как почистить газовую колонку от накипи: инструкция

Содержание:

  1. Причины и последствия образования накипи и копоти.
  2. Признаки загрязнения теплообменника.
  3. Периодичность очистки.
  4. Способы ревизии теплообменника.
  5. Как почистить теплообменник газовой колонки от накипи.
  6. Чистка горелки газовой колонки.

Причины и последствия образования накипи

В частных домах с центральным водопроводом в качестве теплоносителя для горячего водоснабжения и отопления применяется вода, прошедшая обеззараживание и грубую очистку. Этот теплоноситель содержит в большом количестве различные взвешенные вещества, в том числе Са и Mg, которые под воздействием высоких температур, более 65°С, из-за неисправности модулей газовой колонки, неудовлетворительного напора воды выпадают в карбонатный осадок (CaCO3,MgCO3). Такие отложения называются накипью.

Накипь прочно сцепляется с металлической поверхностью внутри теплообменника, трубопровода и т. д.

Низкая теплопроводность накипи, и хорошая адгезия приводит к:

  • перегреву трубок и пластин теплообменника, вплоть до его повреждения;
  • перерасходу энергетических ресурсов;
  • уменьшению расхода воды, вследствие зарастания внутренних каналов трубопровода и элементов водонагревателя;
  • засорению клапанов, кранов и других элементов системы;
  • снижению тепловой мощности прибора.

Наружная часть теплообменника со временем покрывается продуктами сгорания топлива. Образованию копоти способствует интенсивное пламя газовой горелки, плохая тяга в дымоходе, неудовлетворительное соотношение газа и воздуха, повышенное содержание дополнительных примесей в топливе, попадание загрязненного конденсата с дымохода. Копоть влияет на нарушение теплообмена, приводит к повышению расхода газа и воды.

Признаки загрязнения теплообменника

Чтобы исключить преждевременную поломку водонагревателя при перечисленных признаках, желательно, в ближайшее время вызвать специалистов для диагностики и устранения неисправности. Так как теплообменник загрязнятся с наружи копотью, а с внутренней части накипью и патиной (коррозия меди), рассмотрим признаки для каждого отдельного случая.

Теплообменник газовой колонки.

Следующие показатели косвенно указывают на появление накипи в теплообменнике газовой колонки и водонагревательной системе:

  1. Расход воды с крана горячего водоснабжения значительно ниже, чем с холодного. Для выявления истинной причины снижения напора проверяется состояние запорной арматуры, так как ее поломка может привести к подобной ситуации.
  2. Прибор выставлен на максимальную мощность, но вода не достигает заданной температуры. Такие симптомы возможны при снижении давления в газовой магистрали. Поэтому перед демонтажем и чисткой теплообменника следует исследовать давление подаваемого газа. При отсутствии манометра низкого давления, можно ориентироваться по показаниям конфорки газовой печи. Наличие обычного пламени будет свидетельствовать о нормальном давлении в системе.
  3. Горелки водонагревателя начинают часто включатся и выключатся. Но, такая неисправность может возникать и при нестабильной работе газового клапана или модуля управления.
  4. Внутри двухконтурного котла появляется шум. Стоит учитывать, что шум в теплообменнике возникает и из-за закипания воды, или поломки и засорения турбины насоса. Кипение теплоносителя возможно вследствие плохого контакта датчиков температуры с трубопроводом.

Перечисленные признаки косвенно указывают на образование накипи в теплообменнике колонки, поэтому в первую очередь нужно проверить узлы, влияющие на возникновение вышеперечисленных признаков.

Внешнее загрязнение теплообменника определяется при вскрытии корпуса устройства. Радиатор считается загрязненным, если он более чем на 30 % покрыт черным налетом.

Периодичность очистки

Периодичность чистки теплообменника зависит от частоты использования водонагревателя, давления и жесткости воды, исправности узлов, наличие защитного слоя от накипи, состояния дымохода. В одних условиях эксплуатации одной и той же модели проточного радиатора необходимо производить его очистку через 6 месяцев, а в других условиях – через 3 года.

Способы очистки теплообменника

Удаление накипи и копоти может происходить механическим способом или с применением специальных химических реагентов.

Механическая чистка

Процесс очистки происходит при помощи поролоновой губки, щетки с мягкой щетиной, мини мойки высокого давления. К самым эффективным из перечисленных инструментов, позволяющим быстро устранить налет и разрушенные слои накипи, относится мини мойка высокого давления.

Подготовка к чистке теплообменника газовой колонки.

Перед чисткой, для качественного протекания реакции, на пластины радиатора желательно нанести специальную жидкость для снятия нагара, либо поверхность обработать моющим средством для посуды. Можно скомбинировать два способа удаления загрязнений и внутрь змеевика залить жидкость для удаления накипи. По истечению 30 - 40 мин, а при комбинированном способе через 30 - 180 мин (зависит от типа применяемого реагента) произвести качественную промывку элементов проточного радиатора водой под давлением.

Чистка теплообменника газовой колонки мини мойкой высокого давления.

Чистка химическими реагентами

Химическая чистка может проходить в статическом или динамическом темпе. При применении статического метода теплообменник изымается из водонагревателя и заполняется активным веществом:

  1. Соляной кислотой (h3SO4) с присадками от активного реагирования с металлом (ингибиторами). При соприкосновении кислоты с металлической поверхностью нарушается защитный слой и истончается толщина стенки змеевика, поэтому в нее добавляют ингибиторы, которые препятствуют коррозионному износу. После промывки радиатора, отработанные остатки кислоты из змеевика перед выливанием в канализацию необходимо нейтрализовать щелочным раствором, например содой, растворенной в воде.
  2. Ортофосфорной кислотой (Н3РО4). Нейтральное средство, отлично реагирует с карбонатами, не причиняет вред металлическим компонентам системы. Эффективный реагент получают при смешивании Н3РО4 и воды в пропорции 1/6.
  3. Аминосульфоновой кислотой (Nh4SO3) - средством по удалению оксида железа. Чтобы металлические детали при чистке теплообменника котла небыли подвержены преждевременному износу, используется жидкость, состоящая из ингибиторов коррозии, воды с концентрацией Nh4SO3 в количестве 2- 3 %.
  4. Лимонной (С6Н8О7) или уксусной (С2Н4О2) кислотой. Эти вещества менее опасны для металла и человека, чем соляная, ортофосфорная и аминосульфоновая кислота. Но реакция декальцинации длится в несколько раз дольше, чем при обработке соляной или ортофосфорной кислотой. Если для реагирования с одним и тем же количеством накипи h3SO4 достаточно 30 - 40 мин, то для лимонной и уксусной кислоты время увеличивается до 3 - 4 часов.
  5. Специальной жидкостью для очистки накипи. В специализированных магазинах продаются сертифицированные вещества, например, Detex, Boiler Cleaner E, которые легко справляются с накипью. После одних концентратов, необходимо дополнительно обработать полости нейтрализатором кислотности, а другие можно не обрабатывать нейтрализатором, так как они являются нейтральными к компонентам системы. В сервисных центрах должны применяться только сертифицированные жидкости. При соблюдении этого правила, фирма гарантированно имеет защиту от претензий собственника, теплообменник которого после проведения химической очистки потек.

Чистка теплообменника колонки химическими реагентами.

Динамический способ удаления карбонатов осуществляется специальными бустерами. Бустер – устройство, предназначенное для циркуляции активной для накипи жидкости, как по системе отопления, так и по отдельным ее узлам. Промывочная жидкость используется такая же, как и при статической очистке.

Не рекомендуется применять соляную кислоту или ее концентраты при промывке всей гидравлической системы водонагревателя в связи с повреждением резиновых уплотнений.

Использование h3SO4 вызывает преждевременную коррозию металлических деталей бустера.

Все мероприятия проводятся на открытом воздухе или в хорошо проветриваемом помещении, с использованием средств индивидуальной защиты (очки, резиновые перчатки) в одежде, которая хорошо закрывает части тела в целях исключения попадания кислоты и испарений на тело человека. Для улучшения каталитической реакции и снижения времени обработки контактирующая жидкость должна быть 50 - 60°С.

Как почистить теплообменник газовой колонки от накипи

Подробно рассмотрим, как проводится чистка теплообменника газовой колонки Termet TermaQ. Представленная модель нагревателя оснащена дымоходом с отводом для улавливания конденсата и проведения ревизии, полуавтоматической системой розжига горелок.

Газовый водонагреватель Termet TermaQ.

Понадобится следующие инструменты, оборудование и материалы:

  • разводной ключ;
  • набор отверток;
  • канцелярский нож;
  • емкость для нагрева теплообменника и для слива отработанного раствора;
  • мини мойка высокого давления;
  • уксусный раствор;
  • моющее средство для посуды;
  • пищевая сода;
  • резиновые, прокладки на 3/4 дюйма;
  • поролоновая губка;
  • наждачная бумага.

Перед ревизией необходимо закрыть задвижку подачи газа и холодной воды в прибор. Открутить гайки с подающей и горячей линии и произвести слив воды из нагревателя.

Последовательность очистки теплообменника:

  • Снимите ручки регуляторов расхода воды и газа.
  • Демонтируйте крышку водонагревателя.
  • Используя разводной ключ, открутите гайки теплообменника. Если они не откручиваются, нанесите, на место соединения жидкость WD 40 и выждав 30 - 40 мин повторите попытку.

Снятие радиатора газовой колонки.

  • Открутите передний фиксатор теплообменника, датчик контроля температуры воды и планку корпуса.
  • Снимите демонтируемый элемент с прибора.
  • Поролоновой губкой обильно нанесите на внешнюю часть теплообменника средство для мытья посуды.

Внешняя очистка теплообменника водонагревателя.

  • По истечению 30 - 40 мин, аккуратно, дабы не повредить пластины, качественно смойте нагар мини мойкой.
  • В подготовленную для теплообменника емкость наберите горячей воды (50 - 60°С).
  • Поместите теплообменник в емкость с горячей водой, а в змеевик залейте раствор уксусной кислоты.

Внутренняя очистка радиатора газовой колонки.

  • Поддерживайте температуру 50 - 60°С.
  • После трех часов в емкость для сбора отработанного раствора слейте с теплообменника использованную жидкость.
  • Нейтрализуйте кислоту содой и вылейте раствор в канализацию или на землю.
  • Мини мойкой промойте змеевик от остатков накипи и кислоты.

Промывка радиатора от остатков накипи и кислоты под давлением.

  • Шабером или острым ножом на змеевике и трубах для подключения теплообменника зачистите места прилегания уплотнительной вставки.
  • Поставьте теплообменник на место и зафиксируйте его планками.
  • Наждачной бумагой или канцелярским ножом снимите грязный, окислившийся налет с мест соединения корпуса датчика контроля и змеевика. Эту операцию можно выполнить и до установки теплообменника на штатное место.

Для улучшения теплопроводности контактирующие поверхности можно обезжирить и на них нанести термопасту, например, КПТ 8.

  • На змеевике болтами зафиксируйте датчик контроля воды.
  • Подсоедините водонагреватель к водопроводу.
  • Откройте кран подающей линии нагревателя для заполнения контура горячего водоснабжения водой.
  • Проверьте герметичность смонтированного узла.
  • Прикрепите корпус на место, и установите ручки на регуляторы подачи воды и газа.

Проверяйте герметичность системы периодически, в течение 3-4 дней.

Очистка газовой горелки водонагревателя

Забитая мусором, копотью газовая горелка способствует образованию копоти на пластинах и змеевике водонагревателя.

Фото газовой горелки водонагревателя.

Для качественного проведения ревизии нагревательного узла желательно произвести очистку газовых горелок. Эту операцию можно выполнить, как и подручными средствами (щеткой, тряпкой и т. д.), так и мини мойкой высокого давления.

Процедуру желательно производить, когда проводится очистка теплообменника газовой колонки.

Порядок проведения ревизии в газовом водонагревателе Termet TermaQ

Сняв теплообменник газовой колонки, открутите крепления форсунок.

Снятие горелок газовой колонки для чистки от накипи.

От форсунок отсоедините планку крепления фитиля, электрода розжига и термопары. Демонтируйте блок газовых горелок.

Под струей воды или под давлением промойте демонтированный блок.

Мойка горелок газовой колонки.

Просушите очищенные горелки и в обратной последовательности установите их на свое место.

При наличии необходимого инструмента, навыков чистка теплообменника газовой колонки проходит быстро. Благодаря чему срок службы водонагревателя существенно увеличивается.

Как почистить газовую колонку своими руками, промывка теплообменника

Как понять, что загрязнился нагреватель

Как часто надо проводить очистку, напрямую зависит от того, какое качество у воды, протекающей по трубам, т.е. от того, насколько жесткая эта вода. Накипь образуется, потому как высокие температуры входят в реакцию с солями, содержащимися в воде. Налет в виде накипи — это основная причина поломки газовых котлов. Существует ряд признаков, которые помогут понять, что пора делать очистку. Признаки таковы:

  1. 1Давление в колонке на нормальных показателях, но тем не менее при запуске агрегат не работает.
  2. 2Агрегат не запускается.
  3. 3Колонка функционирует, но неправильно, периодически выключается, потому как выполняется запуск тепловой защиты теплообменника.
  4. 4Снизился коэффициент полезной деятельности нагревателя, иными словами, нагревается вода очень долго.

Как снять кожух водонагревателя Bosch

Декоративно-защитный корпус колонки снять просто:

  • нужно открепить круглые регулировочные ручки, потянув их на себя;
  • перевести прямоугольную ручку регулировки газа к полости корпуса (положение «поджег»). Отметим, что такая ручка имеется не у каждой модели водонагревателя «Бош»;
  • выкрутить крестовой отверткой два самореза, фиксирующих кожух на каркасе колонки. Они находятся внизу, по бокам прибора.

Остается двумя руками аккуратно выдвинуть нижнюю часть кожуха водонагревателя на себя. Затем приподнять вверх, полностью снять и отставить в сторону. Теперь можно визуально оценить загрязненность прибора, определить масштаб очистных работ.

Как почистить газовую колонку от накипи

Водоприемный узел – это важнейшая часть всей газовой колонки. В нем находится сетчатый фильтр и мембрана, благодаря которой автоматически включается газ при открытии крана с водой.

Для очистки этого узла необходимо извлечь его из корпуса устройства. Для этого все соединительные винты откручиваются, и корпус открывается.

Фильтр можно легко очистить сильной струей воды, а если мембрана имеет вогнутую форму, значит, ее следует заменить на новую.

Совет! Современные силиконовые мембраны служат гораздо дольше.

После этих процедур можно зак

Простой способ очистки газовой колонки от накипи.

Самый простой способ очистки газовой колонки от накипи.

Сразу хочется оговориться в статье идет речь именно о очистке проточной части водонагревателя от накипи. При этом предупреждаем, вмешиваться в работу газовой части колонки мы категорически не рекомендуем. Газом должны заниматься газовики. Иначе из-за малейшей оплошности можно наделать больших бед.

Самой распространенной неисправностью  газовых проточных нагревателей или газовых колонок считается зарастание водонагревателя накипью, скопившейся в теплообменнике.

От чего забивается накипью теплообменник.

Как понять, нужно ли вам  чистить теплообменник или нет, и от чего он забивается. В  зарастании трубок проточного водонагревателя накипью виноваты, как правило, вы сами и только отчасти жесткая вода. Почему Вы сами, ведь все кругом только и делают, что ругают жесткую воду. Все дело в том, что отложение накипи начинается при температуре воды свыше 80 градусов. Если быть точным, 78 градусов еще отложений нет, а при 82 начинаются интенсивные отложения накипи. А зачем спрашивается Вам такая температура? Для купания температура свыше 42 градусов не нужна, для удаления жиров 45 градусов достаточно, средства для удаления жира справляются с ним и в холодной воде. Для стирки больше 60 градусов не нужно, но сейчас в основном стирают стиральные машинки — автоматы.

Делайте выводы сами. Очень многие оставляют работать газовую колонку на запальнике, несомненно, удобно, нет необходимости разжигать и настраивать ее каждый раз, пламя на запальнике небольшое, но если вы его рассверлили для надежности, то хватает и часа, чтобы температура в теплообменнике нагревателя поднялась до 90 градусов, вот вам и накипь. И третья наша ошибка это работа газовой колонки при малом расходе воды – читайте низком давлении воды в водопроводе. Конечно, проточный водонагреватель в штатном режиме работать при слабом давлении не может. Но русские умельцы и «черта на масленицу заставят блины печь». Где нужно подкрутим, запальник рассверлим, на выходе редуктора подложим шайбочку и вооля, вода еле идет, а колонка горит и при этом даже кипяток с паром выбрасывает. Вот вам и ваша накипь.

Выводы:

Чтобы накипь в колонке не образовывалась, не ленитесь ее отключать и включать по необходимости, если не хотите, пользуйтесь электрическим проточным нагревателем или двухконтурным котлом, рассчитанным на производство горячей воды. И не правда, что котлы хуже греют воду, лично у меня самый обыкновенный, дешевый двухконтурный котел «Житомир» обеспечивает горячей водой без проблем две ванных комнаты и душ.

Не переделывайте автоматику проточного нагревателя, если у вас слабый напор, лучше поставьте повысительный насос, их сейчас выпускают очень много, всегда можно подобрать подходящий именно вам.

При включении газовой колонки в работу отрегулируйте расход воды по температуре, крутой кипяток не нужен, скажите, зачем разбавлять горячую воду холодной, если мы сейчас одинаково платим и за ту и за другую.

Когда необходимо промывать змеевик (теплообменник) газовой колонки.

Теплообменник газовой колонки.

Ну а теперь, если у нас уже случилась беда, давайте займемся промывкой теплообменника. А понять, что теплообменник газовой колонки забит можно по следующим симптомам:

низкий напор в кране горячей воды при хорошем напоре в кране с холодной водой, при этом колонка либо вообще не включается, либо включается и тут же выключается.

Конечно, может еще сломаться кран на входе в колонку, поэтому для начала проверьте его, и только потом разбирайте газовую колонку.

Убедились, что кран исправен, можно приступать к разборке водогрейной колонки.

Как разобрать теплообменник колонки. Инструменты для работы.

 Описывать весь процесс разборки я думаю, не стоит. Главное убедитесь, что у вас имеется необходимый инструмент. Это в минимальном наборе ключ «Бако» или трубный №1, ключ разводной, отвертки — крестовая и плоская минимум №5, комплект запасных паранитовых прокладок.  Еще вам понадобится сантиметров 60 резинового шланга ? дюйма с металлическим хомутом. В некоторых колонка трубка может быть больше, поэтому убедитесь в ее толщине сами. И конечно заранее приобретите в хозмаге антинакипин, продается в виде сухого порошка, разводится горячей водой. Если повезет, можете найти там же, в пластмассовой бутылочке. Берите лучше 2 шт, чтобы хватило на два раза.

Антинакипин

Для начала снимаем с котла фурнитуру – ручки и т.д. Затем кожух. Сняли кожух, определитесь с трубками подвода воды, чтобы случайно не тронуть газ.

Обычно далее все рекомендуют снимать теплообменник и промывать его вне колонки. Мы же поступим иначе.

Промывка колонки  от накипи.

После того как сняли кожух с газовой колонки, перекрываем подачу воды на входе и открываем любой из кранов горячей воды поближе к колонке. Далее от теплообменника проточного водонагревателя откручиваем подающую трубку, и отводим её немного в сторону. Теплообменник медный и трубка нам позволит это сделать без труда. Как только вы открутите с теплообменника гайку, вода из теплообменника начнет уходить — кран открыт, воды сливаем немного, примерно литр. Если быть точным можете найти в паспорте колонки объем воды в теплообменнике и слить чуть больше.

Далее поступаем так: одеваем шланг на вход теплообменника, поднимаем его повыше колонки, в шланг вставляем воронку и в нее тонкой струйкой вливаем приготовленный раствор. Лейте потихоньку, иначе может начаться реакция, и раствор вытолкнет назад. В растворе присутствует соляная кислоты, она может привести к ожогам. Особенно оберегайте глаза.

Раствор антинакипина должен остаться в теплообменнике на пару часов. Если вы не отключали газ, а мы вам это не рекомендовали делать, можно прогревать раствор на горящем запальнике. Реакция пойдет быстрее, времени потребуется меньше.

Под кран подставьте пластмассовое ведро или тазик, и открываете подачу воды в колонку. Только потихоньку. Посмотрите, что выходит из шланга. Если шлама много и напор после промывки неплохой, значит, все прошло удачно, если нет, повторите всю процедуру промывки еще раз. Но в случае применения антинакипина, это вам врятли придется делать. Если вы не нашли антинакипин, можно использовать 100-граммовую упаковку лимонной кислоты, растворив ее предварительно в 500 мл воды. Говорят, что неплохо удается промывка девяти процентным уксусом. Но мы, честно говоря, другие растворы не пробовали.

Все дело в том, что в газовой колонке есть кроме теплообменника и другие детали. Сам теплообменник медный и ему ничего не будет, а вот так называемый редуктор обычно алюминиевый, вы его можете испортить. Поэтому если не найдете антинакипин, с другими растворами по нашей технологии не экспериментируйте, лучше снимите теплообменники и промойте его отдельно.

От чего забивается накипью теплообменник?

Конечно, при полной разборке теплообменника газовой колонки придется сделать много лишней работы, но так вы его точно не испортите. Промывать проточную часть водонагревателя газовой колонки можно и другими растворами, мне например, рассказывали, что неплохо отмывает накипь Пепси Кола, так что если есть желание, экспериментируйте, особенно если у вас свой дом и имеется возможность использовать бытовой антифриз. Удачи!

Как самому почистить газовую колонку в домашних условиях


Существуют несколько признаков прямо указывающих, что пора почистить газовую колонку от накипи и сажи. Отсутствие своевременного обслуживания причина быстрого выхода проточного бойлера из строя.

Ремонт выполняют газовщики или представители компании, продавшей колонку. В последнем случае обслуживание будет бесплатным, при условии, что водонагреватель стоит на гарантии. При необходимости можно провести самостоятельное обслуживание.

Признаки, что надо чистить колонку

Неисправности, указывающие на необходимость обслуживания водонагревателя очевидные. Можно самостоятельно провести диагностику, обратив внимание на следующие сбои:

  • Нет напора — причина: засорился теплообменник газовой колонки. Под постоянным термальным воздействием змеевик внутри постепенно зарастает накипью. Характерный признак: существенная разница давления в трубопроводе ХВС и ГВС.
  • Недостаточная интенсивность нагрева воды — газовая колонка забилась сажей. При сжигании топлива некоторая часть продуктов сгорания оседает на ребрах теплообменника. Большое количество сажи в газовой колонке образуется вследствие нескольких причин:
    1. горение с недостаточным количеством кислорода;
    2. сжигание газа при низкой температуре;
    3. тип топлива (при баллонном газе продуктов горения больше, чем при использовании магистрального топлива).


    Вследствие нарушений в процессе горения на теплообменнике накапливается большое количество продуктов сгорания.
    Сажа обладает теплоизолирующими свойствами. Если вовремя не почистить поверхность радиатора, вода будет прогреваться дольше и с меньшей температурой. Доходит до того, что горелка на полной мощности не в состоянии нагреть жидкость до нужных параметров.

  • Водонагреватель не запускается, либо отключается через 1-2 минуты работы.


Согласно инструкции производителя, проведение планового технического обслуживания проточного газового водонагревателя необходимо не менее 1 раза в 1-2 года. На периодичность профилактической чистки влияет качество используемой воды и наличие защиты от накипи.

Что касается обслуживания накопительных газовых водонагревателей, рекомендуется ежегодно выполнять чистку бака. Во время ремонта меняют магниевый анод, проверяют состояние поверхности и при необходимости делают промывку, устраняя кальциевые отложения.

Чистка газовой колонки от накипи и сажи может быть выполнена самостоятельно. Для работ необходимо понимание внутреннего устройства и конструкции. Потребуется минимальный набор сантехнических инструментов.

Чем и как очистить газовую колонку от накипи

Существует несколько способов устранить известковые отложения с внутренней поверхности труб теплообменника или накопительного бака. Для начала можно использовать подручные средства от накипи или специальную жидкость для очистки (продается в магазинах бытовой химии и строительных супермаркетах). Так, можно избавиться от небольшой накипи.

Если отложения средней тяжести, промыть калорифер без применения специализированного оборудования не получится. В лучшем случае удастся уменьшить толщину отложений.

Почистить газовую колонку от накипи в домашних условиях можно специальным аппаратом для промывки. Насос заправляют профессиональными средствами, растворяющими кальциевые и известковые отложения. Промывка газовой колонки от накипи осуществляется под давлением. Аппарат подсоединяется к отводам теплообменника. В домашних условиях при помощи насоса получится прочистить газовую колонку не разбирая.

Если перечисленные выше советы не помогли, потребуется сервисное обслуживание. Удалить накипь в газовом водонагревателе поможет специализированное промышленное оборудование.

Не стоит пытаться прочистить сильно загрязненный теплообменник механическим способом, используя стальную проволоку. При повреждении внутренней поверхности змеевика создаются условия для быстрого повторного образования отложений.

Чтобы почистить змеевик от накипи в домашних условиях можно воспользоваться следующими подручными и химическими средствами:

  • Бытовая химия и подручные средства — эффективна промывка газовой колонки лимонной кислотой. Лимонная кислота, это средство, присутствующее практически на каждой кухне, сможет справиться с первичными отложениями. Подобный эффект имеет обычный уксус, разведенный до 7% раствора.

    После промывки теплообменника лимонкой или уксусом полость труб обрабатывают мыльным раствором. Среди бытовой химии можно использовать Силит и любой другой состав, устраняющий кальциевый и известковый налет.

  • Специализированные средства для промывки газовых колонок от накипи — готовые составы на основе соляной кислоты. Эффективно справляются даже с серьезными загрязнениями. Промывка проточного газового водонагревателя соляной кислотой и средствами на ее основе выполняется в специализированных сервисных центрах.


При необходимости можно попытаться прочистить даже сильные загрязнения теплообменника в домашних условиях, не прибегая к магазинным средствам. С этой целью приобретают соляную кислоту и разбавляют её дистиллированной водой, так, чтобы получился 5-8% раствор. Готовый состав заливают в теплообменник и оставляют на несколько минут. Работы выполняют с использованием индивидуальных средств защиты.

Неразбавленную соляную кислоту для устранения накипи не применяют. HCI активно действует во внутренней полости труб теплообменника и уничтожает защитный слой, что приводит к разрушению узла и может стать причиной его выхода из строя.

Как защитить газовую колонку от накипи

Проблема появления накипи связана с тем, что соли жёсткости, находящиеся в воде в жидком состоянии, при интенсивном нагреве твердеют. Оптимальная температура при которой происходит ускоренная кристаллизация 70-80°. Соответственно в баках накопительных водонагревателей отложения проявляются быстрее, чем в проточных колонках с меньшей интенсивностью нагрева. Внутри емкости и трубах теплообменника присутствуют шероховатости, на которых накипь оседает сильнее.

Чтобы предотвратить появление отложений используют систему фильтрации и очистки. Водоподготовка включает несколько степеней защиты:

  • Сетчатый магистральный фильтр грубой очистки — устанавливается на подачу ХВС. Обязательно предусматривается в схеме обвязки водонагревателя. Сетка задерживает крупные частицы металлов и защищает от замусоривания узлов колонки, кранов и сбросового клапана.
  • Водяной фильтр для смягчения воды — напоминает пластиковую колбу в которой находится тубус, либо засыпаны кристаллы соли. При прохождении жидкостей, меняется химический состав. Фильтр для газовой колонки снижает количество накипи приблизительно на 40-60%.
    Картриджи с ионообменной смолой для умягчения воды, один из самых эффективных способов защиты теплообменника. Несмотря на определенные затраты по установке фильтра для умягчения, перед газовой колонкой, экономически это оправдано. Срок службы водонагревателя увеличивается как минимум на 30%.
  • Магнитный фильтр — простое устройство. В основе лежит магнитогидродинамический процесс преобразования. В конструкции находятся два магнита, образующие поле. Соли кальция проходя через отрезок, на котором находится водяной фильтр, видоизменяются в арагонит. Вещество не откладывается на металлических поверхностях и не образует накипи.
    Установку магнитного фильтра проводят на участке трубы не имеющей накипи. Перед первым запуском рекомендуется провести чистку водоприемного узла, промыть теплообменник.

Специалисты рекомендуют установить сразу несколько фильтров с разным действием. Так можно максимально нивелировать вредное влияние жесткой воды на теплообменник и накопительную емкость.

Как почистить колонку от сажи

Нагар на теплообменнике снижает КПД, а замусоренные форсунки приводят к отказу в работе водонагревателя. Чтобы избавиться от сажи обслуживание газовых колонок проводят не реже чем 1 раз в 2 года. Во время профилактического ремонта выполняют чистку форсунок и удаление нагара с теплообменника. Сделать это можно следующим образом:

  • Теплообменник промывается обычным мыльным раствором — перед началом работ рекомендуется пропылесосить радиатор и убрать нагар и загрязнения. Чтобы отмыть сажу используют мягкую щетку, с длинным ворсом.
  • Нагар с горелки удаляется при помощи специального крючка — качественно прочищаются все отверстия. После обслуживания регулируется подача газа.


Перед включением колонки обязательно проверяется герметичность резьбовых соединений. Запуск горелки после чистки осуществляется только если нет утечек газа.

Полное руководство по очистке и техническому обслуживанию теплообменника

1. Температура жидкости

Вода может образовывать накипь из-за таких минералов, как карбонат кальция (CaCO3). Соли откладываются на поверхности теплообменника при повышении температуры. Точно так же при повышении температуры во время обработки пищевых продуктов может происходить биологический рост.

2. Тип жидкости

Например, во время переработки молока засорение приводит к увеличению перепада давления в теплообменнике за счет уменьшения потока из-за роста отложений.В молочной промышленности белки, жиры, сахар и минералы из молока и молочных продуктов могут выходить из раствора и откладываться на поверхностях теплообменников и загрязненных каналах.

3. Скорость жидкости

В большинстве случаев загрязнение уменьшается при более высоких скоростях жидкости, поскольку увеличение скорости потока увеличивает напряжение сдвига жидкости, что приводит к большему удалению отложений. В случае загрязнения твердыми частицами увеличение скорости потока может полностью устранить загрязнение.

Но для более сильных отложений увеличение скорости потока сверх определенной точки может не значительно уменьшить загрязнение, а в случае очень сильных отложений увеличение скорости потока может не иметь никакого эффекта.

.

Как удалить накипь с теплообменника

Откуда в теплообменнике берутся накипи?

Накипь

бывает разных форм, но наиболее распространенной является карбонат кальция или CaCO 3 . Накипь кальция выпадает в осадок при превышении пороговой растворимости кальция и карбоната.

Кальций и щелочность присутствуют в различных концентрациях практически во всех источниках подпитки. Поскольку испарение удаляет чистую воду из градирни, концентрация оставшихся растворенных твердых веществ увеличивается.Если концентрация становится слишком большой, они объединяются с образованием накипи карбоната кальция.

Как обычно контролируется накипь в теплообменнике?

Предотвращение образования накипи - это комбинация контроля циклов концентрации и изменения растворимости карбоната кальция с помощью ингибиторов химических пороговых значений или других средств. Зная пороговую растворимость или концентрацию, при которой начинает образовываться окалина, мы можем контролировать условия с безопасным пределом ниже этой точки.

Как узнать, нужна ли чистка теплообменника?

Теплообменники позволяют теплу проходить через материал, обычно через медную трубку или пластину из нержавеющей стали, от горячей стороны к холодной. Накипь или любой другой материал, который накапливается на поверхности теплообмена, действует как изолятор и снижает эффективность теплообменника.

Большинство теплообменников предназначены для работы в определенном температурном диапазоне, называемом DT. DT описывает разницу между температурой на входе и выходе из теплообменника.Уменьшение DT указывает на снижение эффективности теплопередачи. Обычно это происходит из-за образования накипи, микробиологического загрязнения или оседания грязи в трубках или на них.

Какой продукт использовать для очистки теплообменника?

Scalzo - самый эффективный продукт для очистки теплообменников, хотя для некоторых требуются специальные средства. Scalzo содержит соляную кислоту для наиболее эффективной очистки, а также ингибиторы коррозии и диспергаторы, обеспечивающие защиту металла и предотвращающие образование отложений после очистки.

Соляная кислота не рекомендуется для некоторых материалов, в частности для нержавеющей стали. CA-100 следует использовать для теплообменников с деталями из нержавеющей стали. Лимонная кислота менее агрессивна и не разъедает нержавеющую сталь.

Что такое пошаговая процедура очистки теплообменника?

Выполните следующие действия для эффективной очистки.

  1. Изолируйте чиллер, закрыв клапаны как можно ближе к агрегату. Оперативная очистка никогда не бывает такой эффективной, как автономная очистка, потому что кислоте требуется достаточно времени для контакта с окалиной.
  2. Оцените общее количество галлонов воды в теплообменнике и изолированном участке трубы. Объем пластинчатого теплообменника составляет примерно 40% воды из башни. Кожухотрубные теплообменники содержат около 30% общего объема воды из башни. Емкость для чистящего раствора должна быть как минимум в два раза больше теплообменника.
  3. Установите насос подачи химикатов, как показано на схеме выше. Возвратный трубопровод обратно в бак для чистящего раствора должен выходить из верхней части теплообменника, чтобы обеспечить заполнение устройства чистящим раствором.
  4. Залейте воду в бак для чистящего раствора и включите циркуляционный насос. Включите насос и продолжайте доливать воду, пока вода не выйдет из обратной линии обратно в бак для чистящего раствора.
  5. При работающем циркуляционном насосе добавьте 8 унций CTA-800 или альтернативного пеногасителя непосредственно в бак для чистящего раствора.
  6. Теперь добавьте один галлон Scalzo, Ox-Sol, CA-100 или чистящего средства, рекомендованного вашим представителем Chardon в бак для чистящего раствора.
  7. Измерьте pH раствора, окунув pH-бумагу в поток воды, возвращающейся из теплообменника. PH должен быть 2-3. Если pH не снижается до этого диапазона, продолжайте добавлять кислоту, пока возвращаемый pH не достигнет диапазона 2-3.
  8. Продолжайте циркулировать чистящий раствор. Проверяйте pH каждые 5 минут. Добавьте дополнительную кислоту, если pH увеличивается до более чем 3.
  9. Повторяйте шаг 8, пока pH не будет оставаться в пределах от 2 до 3 в течение 30 минут. Теплообменник теперь чистый.Нейтрализуйте чистящий раствор до pH 5,0 с помощью BD-6, добавив его в резервуар и прокачивая смесь.
  10. Слить воду из бака и теплообменника в канализацию.
  11. Добавьте свежую воду в резервуар и прокачивайте свежую воду до тех пор, пока pH не достигнет 6 или 7 и не будет поддерживать его.
  12. Добавьте 1/2 галлона Tube Bright для заключительной промывки, чтобы пассивировать необработанные металлические поверхности. Обеспечьте циркуляцию в течение 15 минут и слейте воду или, если систему нужно подключить к сети, оставьте химические вещества в системе.
  13. При необходимости снимите концевые раструбы и осмотрите трубные решетки, трубы и концевые раструбы, чтобы определить желаемую очистку. Если мусор остался, удалите его вручную и промойте участки обрабатывающей водой.

Если система по-прежнему недостаточно очищена, замените концевые раструбы и повторите процедуру 1-10 еще раз.

Поделиться:

.

Очистка теплообменника - эффективный метод очистки FQE Chemicals

Очистка теплообменника без их вытягивания для максимальной скорости и экономии.

Вытаскивать теплообменник для очистки - это утомительно, требует много времени и дорого, но мы можем помочь. Мы разрабатываем индивидуальные решения и процессы, позволяющие очищать теплообменники на месте без задержек, разочарований и затрат. Никакого вывода оборудования из строя в течение недели. Никакой гидроструйной обработки. Нет необходимости переделывать связки из-за чрезмерного обращения.

Забудьте о том, чтобы отделять комплект от корпуса или заменять множество деталей в течение недели. Наш метод химической очистки теплообменников позволяет чистить теплообменники, не снимая их, возвращая ваше оборудование в отличное состояние, улучшая график, безопасность и прибыль.

Процесс прост: после того, как вы изолировали выбранную единицу или группу единиц, мы направляем раствор тщательно подобранных и смешанных чистящих химикатов. Один из наших экспертов управляет процессом и следит за ним до завершения.

.Промышленный теплообменник

: эксплуатация и техническое обслуживание для минимизации загрязнения и коррозии

1. Введение

Теплообменник играет важную роль в промышленном применении. Он применяется для нагрева и охлаждения крупных промышленных технологических жидкостей [1]. Теплообменник представляет собой динамическую конструкцию, которая может быть адаптирована к любому промышленному процессу в зависимости от температуры, давления, типа жидкости, фазового потока, плотности, химического состава, вязкости и многих других термодинамических свойств [2, 3].В связи с глобальным энергетическим кризисом эффективная рекуперация или рассеивание тепла стала жизненно важной задачей для ученых и инженеров [4].

Теплообменники предназначены для оптимизации площади поверхности стенки между двумя жидкостями для максимального повышения эффективности при минимальном сопротивлении потоку жидкости через теплообменники при ограничении стоимости материалов. Рабочие характеристики теплообменных поверхностей могут быть улучшены за счет добавления гофр или ребер в теплообменник, которые увеличивают площадь поверхности и могут направлять поток жидкости или вызывать турбулентность [5].Эффективность промышленных теплообменников можно контролировать в режиме онлайн, отслеживая общий коэффициент теплопередачи на основе его температуры, которая имеет тенденцию к снижению со временем из-за загрязнения [6].

Возможное повреждение оборудования, вызванное образованием накипи, может быть очень дорогостоящим, если обработанная вода не обрабатывается правильно. Для очистки воды в промышленности обычно используются химические вещества. В США химикаты на сумму 7,3 миллиарда долларов в год выбрасываются в воздух, сбрасываются в реки и закапываются на свалки каждый год.Сорок процентов этих химикатов закупается промышленностью для борьбы с накипью в градирнях, котлах и другом теплопередающем оборудовании. Этот процент также составляет более 2 миллиардов долларов токсичных отходов, которые составляют триллион галлонов загрязненной воды, ежегодно сбрасываемой на землю, которая принадлежит всем нам.

Техническое обслуживание загрязненных трубчатых теплообменников может выполняться несколькими методами, такими как кислотная очистка, пескоструйная обработка, струя воды под высоким давлением, очистка пули или буровых штанг.В крупномасштабных системах водяного охлаждения для теплообменников обработка воды, такая как очистка, добавление химикатов, каталитический подход и т. Д., Используется для минимизации загрязнения теплообменного оборудования [7]. Другие процессы очистки воды также используются в паровых системах для электростанций для минимизации загрязнения и коррозии теплообменника и другого оборудования. Большинство химикатов и добавок, используемых для уменьшения обрастания и коррозии, опасны для окружающей среды [8]. Итак, настало время применять химические вещества, безопасные для окружающей среды [9, 10, 11].

2. О промышленном теплообменнике

Промышленный теплообменник - это теплообменное оборудование, в котором используется процесс обмена тепловой энергией между двумя или более средами, имеющими разную температуру. Промышленные теплообменники применяются в различных промышленных приложениях, таких как производство электростанций, нефтегазовая промышленность, химические перерабатывающие предприятия, транспорт, альтернативные виды топлива, криогенная промышленность, кондиционирование воздуха и охлаждение, рекуперация тепла и другие отрасли.Кроме того, теплообменники - это оборудование, всегда тесно связанное с нашей повседневной жизнью, например, испарители, воздухоподогреватели, автомобильные радиаторы, конденсаторы и маслоохладители. В большинстве теплообменников поверхность теплообмена разделяет жидкость, которая включает в себя широкий диапазон различных конфигураций потока для достижения желаемых характеристик в различных применениях. Теплообменники можно классифицировать по-разному. Как правило, промышленные теплообменники классифицируются в соответствии с конструкцией, процессами переноса, степенью компактности поверхности, схемами потока, схемами прохода, фазой технологических жидкостей и механизмами теплопередачи, как показано на Рисунке 1.

Рисунок 1.

Классификация промышленных теплообменников [12].

3. Основные концепции конструкции теплообменника

Концепции конструкции теплообменника должны соответствовать нормальным технологическим требованиям, указанным в условиях эксплуатации для сочетания некорродированных и корродированных условий и чистых и загрязненных условий. Одним из важнейших критериев конструкции теплообменника является то, что теплообменник должен быть спроектирован таким образом, чтобы его было легко обслуживать, что обычно подразумевает очистку или замену деталей, трубок, фитингов и т. Д.повреждены старением, вибрацией, коррозией или эрозией в течение всего периода эксплуатации.

Следовательно, конструкция теплообменника должна быть максимально простой, особенно если ожидается сильное загрязнение. За счет минимизации температуры в сочетании с выбором скорости жидкости и снижением концентрации предшественников загрязняющих веществ снижается вероятность потенциального загрязнения. Кроме того, должна быть разрешена самая высокая скорость потока в условиях падения давления и эрозии потока. Кроме того, выбор материала при ограниченных затратах замедляет накопление отложений и позволяет сократить время пребывания.Он также должен быть совместимым с точки зрения pH, коррозии и не только с теплообменником, но и с точки зрения теплооборудования и линий передачи теплообменника.

4. Обрастание

Обрастание всегда определяется как образование и накопление отложений нежелательных материалов на поверхностях технологического оборудования. Эти обычно материалы с очень низкой теплопроводностью образуют изоляцию на поверхности, которая может чрезвычайно ухудшить характеристики поверхности по передаче тепла при разнице температур, для которой она была разработана [13].Вдобавок к этому засорение увеличивает сопротивление потоку жидкости, что приводит к более высокому перепаду давления в теплообменнике. На поверхностях теплопередачи могут возникать многие типы загрязнений, например, кристаллизационное загрязнение, загрязнение твердыми частицами, коррозионное загрязнение, загрязнение химическими реакциями, биологическое загрязнение и загрязнение отверждением [14]. Обрастание может иметь очень дорогостоящий эффект в промышленности, что в конечном итоге увеличивает расход топлива, прерывает работу, производственные потери и увеличивает затраты на техническое обслуживание [15].

Обрастание состоит из пяти стадий, которые можно кратко охарактеризовать как начало обрастания, перенос на поверхность, прикрепление к поверхности, удаление с поверхности и старение на поверхности [16]. Есть несколько параметров, влияющих на факторы загрязнения, такие как pH [9], скорость [17], объемная температура жидкости [18], температура поверхности теплопередачи, структура поверхности [19] и шероховатость [20, 21].

Общий процесс загрязнения обычно считается чистым результатом двух одновременных подпроцессов: процесса осаждения и процесса удаления, как показано на рисунке 2.Как показано на Рисунке 3, рост этих отложений приводит к снижению теплопередачи теплообменника со временем. Эта проблема влияет на энергопотребление промышленных процессов и в конечном итоге вызывает промышленный сбой из-за отказа теплообменника, как показано на рисунке 4.

Рисунок 2.

Общий процесс загрязнения [22].

Рисунок 3.

Устойчивость к обрастанию в зависимости от времени [22].

Рисунок 4.

Сильное скопление отложений на трубопроводах теплообменника [24, 23].

5. Коррозия

Характеристики окружающей среды, такие как почва, атмосфера, вода или водные растворы, обычно разрушают обычные металлы и сплавы. Разрушение этих металлов известно как коррозия. Приятно то, что коррозия происходит из-за электрохимического механизма. Преждевременные отказы различного оборудования вызваны коррозией в большинстве промышленных процессов и инженерных операций, что приводит к нежелательным проблемам. Сюда входят дорогостоящие поломки, внеплановый останов и увеличение затрат на техническое обслуживание.

Этот простой ухудшается в таких областях, как химическая промышленность, нефтепереработка, морские и наземные электростанции, производство бумаги, кондиционирование воздуха, холодильники, производство продуктов питания и спиртных напитков. Таким образом, общая информация и механизм коррозии вызовут большой интерес у общественности и промышленности [24]. На процесс коррозии влияют различные параметры, как показано на рисунке 5. Следовательно, эти критерии следует учитывать при проектировании теплообменников.

Рисунок 5.

Фактор, влияющий на коррозию [25].

6. Затраты, связанные с обрастанием

Помимо высокой стоимости загрязнения теплообменника, было сообщено об очень небольшом количестве работ по точному определению причин экономических штрафов из-за загрязнения. Таким образом, они объясняют стоимость разницей в конструкции и эксплуатации теплообменника. Тем не менее, надежное знание экономики обрастания желательно для оценки экономической эффективности различных стратегий смягчения [26, 27]. Общие затраты, связанные с обрастанием, включают следующее:

  1. Капитальные затраты

    Избыточная площадь поверхности, необходимая для преодоления тяжелых условий обрастания, затраты на более прочный фундамент, обеспечение дополнительных площадей и увеличение затрат на транспортировку и установку.

  2. Затраты на энергию

    Затраты на дополнительное топливо, необходимое, если загрязнение приводит к дополнительному сжиганию топлива в теплообменном оборудовании, чтобы преодолеть эффект загрязнения.

  3. Затраты на техническое обслуживание

    Затраты на удаление отложений обрастания, затраты на химикаты или другие эксплуатационные расходы на противообрастающие устройства.

  4. Себестоимость производственных потерь

    Плановые или внеплановые остановки производства из-за загрязнения теплообменников могут привести к большим производственным потерям.Эти потери часто считаются основной причиной засорения, и их очень трудно оценить.

  5. Дополнительные затраты на управление окружающей средой

    Затраты на утилизацию большого количества химикатов / добавок, используемых для уменьшения загрязнения.

В разных странах сообщается об огромных затратах на загрязнение. Steinhagen et al. сообщил о затратах на обрастание с точки зрения ВНП для некоторых стран, как представлено в таблице 1.

Страна Стоимость обрастания
млн долларов США
ВНП (1984)
млрд долларов США
Затраты на обрастание
% ВНП
США 3860–7000
8000–10 000
3634 0.12–0,22
0,28–0,35
Япония 3062 1225 0,25
Западная Германия 1533 613 0,25 –930 285 0,20–0,33
Австралия 260 173 0,15
Новая Зеландия 35 0.15
Всего индустриального мира 26,850 13 429 0,20

Таблица 1.

Расчетные затраты на загрязнение, понесенные в некоторых странах (оценка 1992 г.) [28].

7. Текущие усилия по решению проблем, связанных с отложениями отложений и коррозией

Было проделано много работ для уменьшения образования отложений и контроля коррозии. В последние годы было разработано множество методов борьбы с загрязнением и коррозией [29].Эти методы можно классифицировать как химические средства (ингибиторы), механические средства, изменение фаз раствора, электромагнитные поля, электростатические поля, акустические поля, ультрафиолетовое излучение, радиационная или каталитическая обработка, обработка поверхности, зеленые добавки, волокно в виде суспензии, В прошлом хромат был успешным химическим средством для защиты от коррозии и контроля роста кристаллов, пока он не был запрещен. Введен полифосфатный ингибитор коррозии вместо добавок на основе хроматов.Этот ингибитор имеет тенденцию к разложению загрязняющих веществ в воде с высокой кальциевой жесткостью. Knudsen et al. исследовали загрязнение воды с высоким содержанием кальция, содержащей ингибитор фосфатной коррозии. Для подавления осаждения фосфата кальция использовались четыре различных сополимера, которые включают акриловую кислоту / малеиновый ангидрид (AA / MA), акриловую кислоту / гидроксипропилакрилат (AA / HPA), акриловую кислоту / сульфоновую кислоту (AA / SA) и сульфированный стирол / малеиновый ангидрид (SS / MA). Исследования проводились путем варьирования pH, температуры поверхности и скорости.В сообщенном исследовании говорится, что как AA / HPA, так и (AA / SA) были очень эффективны в ингибировании осаждения фосфата кальция и коррозии.

С другой стороны, каталитический материал, состоящий из цинка и турмалина, был исследован для уменьшения загрязнения и коррозии. Tijing et al. сообщили, что материал катализатора потенциально снижает образование отложений карбоната кальция [30]. Teng et al. сообщили об аналогичном открытии каталитического материала по уменьшению воздействия сульфата кальция [31]. Более того, Tijing et al.дальнейшее расширение исследований за счет использования того же материала катализатора для уменьшения коррозии труб из углеродистой стали [31].

В прошлом большинство используемых методов, химикатов / добавок для загрязнения и уменьшения коррозии были опасны для окружающей среды. Итак, настало время применять методы экологически чистых технологий и химические подходы, безвредные для окружающей среды [9, 10, 11].

8. Снижение загрязнения с помощью зеленой технологии (каталитическое смягчение и зеленая добавка)

Физическая очистка воды (PWT) - хорошая альтернатива безопасному и эффективному методу смягчения нехимического загрязнения.Примеры PWT включают постоянные магниты [32], устройства с соленоидными катушками [33], зеленые добавки [34], а также каталитические материалы и сплавы [35].

Чтобы уменьшить образование накипи на теплопередающих поверхностях, часто используются химические добавки, но химические вещества дороги и представляют опасность для окружающей среды и здоровья. Снижение образования накипи от дегидратов сульфата кальция на поверхностях теплообменников с помощью волокон из натуральной древесной массы было проведено Кази [36] и другими в Университете Малайи. Экспериментальная работа была спроектирована и проведена для изучения использования волокна из натуральной древесной массы в качестве средства уменьшения загрязнения, как показано в Таблице 2 и на Рисунке 6.

Таблица 2.

Экспериментальная установка для уменьшения загрязнения путем включения зеленых добавок [36, 37].

Рисунок 6.

Принципиальная схема экспериментального контура потока [37, 36].

На рисунке 7 показана зависимость сопротивления обрастанию от времени для раствора сульфата кальция с различной концентрацией волокон 0,25% (1), 0,15% (2), 0,05% (3) и 0,02% кривой (4) в минеральном растворе. . Результаты показывают, что волокна в растворе замедляют засорение нагретых поверхностей, и это замедление пропорционально концентрации волокна в растворе.Индукционный период также увеличился.

Рис. 7.

Устойчивость к обрастанию как функция времени для волокна эвкалипта в перенасыщенном растворе сульфата кальция [38, 37].

9. Очистка теплообменника

Для поддержания или восстановления эффективности теплообменника часто бывает необходимо очистить теплообменники. Методы очистки можно разделить на две группы: онлайн-очистка и автономная очистка [38]. В некоторых приложениях очистку можно выполнять в интерактивном режиме, чтобы поддерживать приемлемую производительность без прерывания работы.В остальных случаях необходимо использовать автономную очистку.

9.1. Оперативная очистка

Оперативная очистка обычно использует механический метод, предназначенный только для стороны трубы и не требующий разборки. Преимущества онлайн-очистки - это непрерывная работа теплообменника с надеждой на то, что не будет простоев, вызванных очисткой. Однако это увеличивает дополнительные расходы на установку нового теплообменника или большие затраты на модернизацию, и нет гарантии, что все трубы будут достаточно очищены.

  1. Циркуляция шариков из губчатой ​​резины [39]

    Этот метод позволяет предотвратить накопление твердых частиц, образование биопленки и осаждение продуктов коррозии и накипи. Это применимо только для потока внутри трубок.

  2. Две фазы обработки сульфатом железа

    Первая фаза включает первоначальную укладку защитной пленки. Вторая фаза включает в себя уход за пленкой, которая в противном случае была бы разрушена сдвигающим эффектом потока.

  3. Хлорирование, используемое для борьбы с биообрастанием [40]

  4. Ингибиторы образования накипи [10, 41, 42]

  5. Магнитные устройства [10, 43, 44]

  6. Звуковая технология [45]

    Излучатели звука высокой и низкой частоты (рожки) используются для устранения проблем загрязнения теплообменников. Использование звука гораздо менее эффективно в липких и вязких отложениях, которые обычно связаны с зашлаковыванием.

  7. Химическая очистка в режиме онлайн [46]

    Впрыск химических растворов в технологические потоки для целей очистки.

  8. Использование излучения [47]

    Радиационная стерилизация воды с микробами, использование ультрафиолетового света и гамма-лучей рассматривались давно.

9.2. Автономная очистка

Альтернативой онлайн-очистке является остановка работы и очистка теплообменника. Автономную очистку можно разделить на автономную химическую очистку или механическую очистку. Метод очистки предпочтителен без необходимости демонтажа теплообменников, но обычно необходим доступ к внутренним поверхностям.Было бы разумно рассмотреть возможность установки «резервного» теплообменника, тем самым давая возможность очистить загрязненный теплообменник, в то же время поддерживая производство.

9.2.1. Механическая очистка в автономном режиме
  1. Сверление труб и установка штанг [28]

    К вращающемуся валу могут быть применены устройства, включая сверла, режущие и полировальные инструменты и щетки, которые могут быть изготовлены из различных материалов, например, стали или нейлона, в зависимости от латуни. от материала трубки и характера отложений.

  2. Очистка взрывчатыми веществами

    Используется для контролируемых взрывов, при которых энергия для удаления отложений передается ударной волной в воздухе, прилегающей к очищаемой поверхности, или общей вибрацией труб, вызывающей взрыв. Это относительно новая инновация в очистке котельных. Можно начинать процесс очистки, пока конструкция еще горячая.

  3. Термический удар [48]

    Особенно быстрые изменения температуры вызывают растрескивание слоя загрязнения с возможностью отслаивания.Эта техника похожа на пропитку паром. Промывка водой уносит смещенный материал, и ее повторяют до получения чистых поверхностей.

9.2.2. Автономная химическая очистка
  1. Ингибитор фтористоводородной, соляной, лимонной, серной кислоты или ЭДТА (химическое чистящее средство) для очистки от оксидов железа, отложений кальция / магния (загрязнение) и т.д. [49].

    Ингибитор фтористоводородная кислота на сегодняшний день является наиболее эффективным средством, но ее нельзя использовать, если отложения содержат более 1% (мас. / Об.) Кальция.

  2. Хлорированные или ароматические растворители с последующей промывкой подходят для тяжелых органических отложений, например смол и полимеров (загрязняющих веществ) [50].

  3. Щелочные растворы перманганата калия [51] или паровоздушного коксоудаления [52] подходят для очистки отложений углерода (загрязняющих веществ).

10. Заключение

Загрязнение и коррозия являются основными нерешенными проблемами в эксплуатации теплообменников. Хотя проблемы отложений обрастания и их влияние на экономику вызывают серьезную озабоченность, соответствующие органы по-прежнему не осведомлены об этом.Кроме того, последствия коррозии многочисленны и разнообразны, и их влияние на эффективную, надежную и безопасную работу оборудования или конструкций часто бывает более серьезным, чем простая потеря массы металла. Таким образом, настоящий документ будет способствовать продвижению заинтересованных организаций в разных странах, серьезности этой проблемы и применению возможных подходов к смягчению последствий.

Для промышленности правильный метод очистки и контроль играют важную роль в снижении производственных затрат.Себестоимость продукции значительно возрастает из-за использования химикатов, работ по техобслуживанию, простоев и потерь воды. Следовательно, соответствующие органы должны понимать важность борьбы с коррозией, очистки загрязнения и обеспечивать соблюдение определенного стандарта процедуры очистки в промышленности.

Выражение признательности

Авторы выражают признательность за грант High Impact Research Grant UM.C / 625/1 / HIR / MOHE / ENG / 45, UMRG RP012A-13AET, University Postgraduate Research Fund (PPP) (e.г. PG109-2015A), Ливерпульский университет Джона Мура, Соединенное Королевство, и Университет Малайзии, Малайзия, за поддержку в проведении этой исследовательской работы.

.

% PDF-1.4 % 1455 0 объект > endobj xref 1455 24 0000000016 00000 н. 0000002178 00000 п. 0000002360 00000 н. 0000003425 00000 н. 0000004095 00000 н. 0000004208 00000 н. 0000004323 00000 н. 0000004717 00000 н. 0000008465 00000 н. 0000009018 00000 н. 0000009665 00000 н. 0000011061 00000 п. 0000012227 00000 п. 0000013469 00000 п. 0000014681 00000 п. 0000015781 00000 п. 0000017016 00000 п. 0000018461 00000 п. 0000019824 00000 п. 0000021239 00000 п. 0000021280 00000 п. 0000029415 00000 п. 0000001968 00000 н. 0000000791 00000 п. трейлер ] / Предыдущая 4080485 / XRefStm 1968 >> startxref 0 %% EOF 1478 0 объект > поток h ޴ T} LeZRe-kJp "lVdA8>, uP" P # xfUIDrMT4XvFbd`h M ؗ b & 5èw = h | => (o? tNEmc8ezI7 & Z @ EF $ 2OV5se + wiN񛳠0i ~ dy) Ne Կ & (| D> aF6ͤB * za¤ ^ qU7;: uxF \ J + KQF2S% YQ Ջ] = sfu ''; 2cY \ eMet \> 2op; ? zp 僞 / dU ֚ YL / R`Dof3ZƏ} ŨΧkOȹ! 6u] ma ~ L ޤ Y @>?; = 8GerELAij3k & {> G ܎ zˣȟ ~ n򞷷LSә $ cꨋeF | sk>, ygnX {'ܮ ~ /:' ͧ yyLSZER " '̮ z3 * = O9 \ {jHSl утонуть } M \ 9 * nIDoSS-c2J ^ f | dwsv2B] M? YR \ k'sL & LnwϷ3D [7` [n_Y ^ / m,: QdVw Т ه

.

ТЕПЛООБМЕННИКИ

Теплообменник - это устройство, используемое для передачи тепла между двумя или более жидкостями. Жидкости могут быть одно- или двухфазными и, в зависимости от типа теплообменника, могут быть разделены или находиться в прямом контакте. Устройства, использующие источники энергии, такие как стержни ядерного топлива или огневые нагреватели, обычно не считаются теплообменниками, хотя многие принципы, заложенные в их конструкции, одинаковы.

Чтобы обсудить теплообменники, необходимо дать некоторую форму категоризации.Обычно используются два подхода. Первый рассматривает конфигурацию потока в теплообменнике, а второй основан на классификации типа оборудования в первую очередь по конструкции. Оба рассмотрены здесь.

Классификация теплообменников по конфигурации потока

Существует четыре основных конфигурации потока:

На рисунке 1 показан идеализированный противоточный теплообменник, в котором две жидкости текут параллельно друг другу, но в противоположных направлениях.Этот тип организации потока позволяет максимально изменить температуру обеих жидкостей и, следовательно, является наиболее эффективным (где эффективность - это количество фактически переданного тепла по сравнению с теоретическим максимальным количеством тепла, которое может быть передано).

Рисунок 1. Противоток.

В теплообменниках с прямоточным потоком потоки текут параллельно друг другу и в том же направлении, как показано на рисунке 2. Это менее эффективно, чем противоток, но обеспечивает более однородную температуру стенок.

Рисунок 2. Попутный поток.

По эффективности теплообменники с перекрестным потоком занимают промежуточное положение между противоточными и параллельными теплообменниками. В этих установках потоки текут под прямым углом друг к другу, как показано на рисунке 3.

Рисунок 3. Поперечный поток.

В промышленных теплообменниках часто встречаются гибриды вышеуказанных проточных типов. Примерами являются комбинированные теплообменники с поперечным / противотоком и многопроходные теплообменники.(См., Например, рисунок 4.)

Рисунок 4. Перекрестный / противоточный поток.

Классификация теплообменников по конструкции

В этом разделе теплообменники классифицируются в основном по их конструкции, Garland (1990) (см. Рисунок 5). Первый уровень классификации - разделение типов теплообменников на рекуперативные и регенеративные. Рекуперативный теплообменник имеет отдельные пути потока для каждой жидкости, и жидкости протекают одновременно через теплообменник, обмениваясь теплом через стенку, разделяющую пути потока.Рекуперативный теплообменник имеет единственный путь потока, по которому попеременно проходят горячие и холодные жидкости.

Рисунок 5. Классификация теплообменников.

Регенеративные теплообменники

В регенеративном теплообменнике путь потока обычно состоит из матрицы, которая нагревается при прохождении через нее горячей жидкости (это известно как «горячий обдув»). Это тепло затем передается холодной жидкости, когда она протекает через матрицу («холодный удар»).Регенеративные теплообменники иногда называют емкостными теплообменниками . Хороший обзор регенераторов дает Walker (1982).

Регенераторы в основном используются для рекуперации тепла газа / газа на электростанциях и в других энергоемких отраслях. Два основных типа регенераторов - статические и динамические. Оба типа регенераторов являются кратковременными в эксплуатации, и, если при их проектировании не уделить должного внимания, обычно происходит перекрестное загрязнение горячего и холодного потоков.Однако использование регенераторов, вероятно, расширится в будущем, поскольку предпринимаются попытки повысить энергоэффективность и утилизировать больше низкопотенциального тепла. Однако, поскольку регенеративные теплообменники, как правило, используются для специальных применений, рекуперативные теплообменники более распространены.

Рекуперативные теплообменники

Существует много типов рекуперативных теплообменников, которые можно в широком смысле сгруппировать в непрямой контакт, прямой контакт и специальные. В теплообменниках непрямого контакта теплоносители разделяются с помощью трубок, пластин и т. Д.. Теплообменники с прямым контактом не разделяют жидкости, обмениваясь теплом, и фактически полагаются на то, что жидкости находятся в тесном контакте.

В этом разделе кратко описаны некоторые из наиболее распространенных типов теплообменников, которые организованы в соответствии с классификацией, приведенной на рисунке 5.

В этом типе пары разделены стенкой, обычно металлической. Примерами являются трубчатые теплообменники, см. Рисунок 6, и пластинчатые теплообменники, см. Рисунок 7.

Трубчатые теплообменники очень популярны из-за гибкости, которую разработчик должен учитывать в широком диапазоне давлений и температур.Трубчатые теплообменники можно разделить на несколько категорий, из которых кожухотрубный теплообменник является наиболее распространенным.

Кожухотрубный теплообменник состоит из ряда трубок, установленных внутри цилиндрической оболочки. На рисунке 8 показан типичный блок, который можно найти на нефтехимическом заводе. Две жидкости могут обмениваться теплом, одна жидкость течет по внешней стороне трубок, а вторая жидкость течет по трубкам. Жидкости могут быть одно- или двухфазными и могут течь в параллельном или перекрестном / противотоке.Кожухотрубный теплообменник состоит из четырех основных частей:

  • Передняя часть - это место, где жидкость попадает в трубную часть теплообменника.

  • Задний конец - это то место, где жидкость со стороны трубы выходит из теплообменника или где она возвращается в передний коллектор в теплообменниках с несколькими проходами со стороны трубы.

  • Пучок труб - состоит из трубок, трубных решеток, перегородок, анкерных стержней и т. Д. Для удержания пучка вместе.

  • Кожух - содержит пучок труб.

Популярность кожухотрубных теплообменников привела к разработке стандарта для их обозначения и использования. Это стандарт ассоциации производителей трубчатых теплообменников (TEMA). Обычно кожухотрубные теплообменники изготавливаются из металла, но для специальных применений (например, с использованием сильных кислот в фармацевтических препаратах) могут использоваться другие материалы, такие как графит, пластик и стекло. Также нормально, чтобы трубки были прямыми, но в некоторых криогенных приложениях используются спиральные или змеевики Хэмпсона .Простая форма кожухотрубного теплообменника - это двухтрубный теплообменник. Этот теплообменник состоит из одной или нескольких трубок, содержащихся внутри трубы большего размера. В наиболее сложной форме многотрубный двухтрубный теплообменник мало отличается от кожухотрубного теплообменника. Однако двухтрубные теплообменники, как правило, имеют модульную конструкцию, поэтому несколько блоков могут быть соединены болтами для достижения требуемой нагрузки. Книга Э.А.Д. Saunders [Saunders (1988)] дает хороший обзор трубчатых теплообменников.

К другим типам трубчатых теплообменников относятся:

  • Печи - технологическая жидкость проходит через печь в прямых или спирально намотанных трубах, а нагрев осуществляется горелками или электрическими нагревателями.

  • Пластинчатые трубы - в основном используются в системах рекуперации тепла и кондиционирования воздуха. Трубки обычно монтируются в какой-либо форме воздуховода, а пластины действуют как опоры и обеспечивают дополнительную площадь поверхности в виде ребер.

  • С электрическим нагревом - в этом случае жидкость обычно течет по внешней стороне электрически нагреваемых трубок (см. Джоулев нагрев).

  • Теплообменники с воздушным охлаждением состоят из пучка труб, вентиляторной системы и несущей конструкции. Трубки могут иметь ребра различного типа, чтобы обеспечить дополнительную площадь поверхности со стороны воздуха. Воздух либо всасывается через трубы вентилятором, установленным над пучком (принудительная тяга), либо продувается через трубы вентилятором, установленным под пучком (принудительная тяга). Они, как правило, используются в местах, где есть проблемы с получением достаточного количества охлаждающей воды.

  • Тепловые трубы, сосуды с мешалкой и теплообменники из графитовых блоков можно рассматривать как трубчатые или помещать в Рекуперативные «Особые предложения». Тепловая труба состоит из трубы, материала фитиля и рабочей жидкости. Рабочая жидкость поглощает тепло, испаряется и переходит на другой конец тепловой трубы, где конденсируется и выделяет тепло. Затем жидкость под действием капилляров возвращается к горячему концу тепловой трубы для повторного испарения. Сосуды с мешалкой в ​​основном используются для нагрева вязких жидкостей.Они состоят из емкости с трубками внутри и мешалки, такой как пропеллер или ленточный винтовой импеллер. Трубки несут горячую жидкость, а мешалка вводится для обеспечения равномерного нагрева холодной жидкости. Теплообменники с угольным блоком обычно используются, когда необходимо нагреть или охладить агрессивные жидкости. Они состоят из твердых блоков углерода, в которых просверлены отверстия для прохождения жидкости. Затем блоки скрепляются болтами вместе с коллекторами, образуя теплообменник.

Пластинчатые теплообменники отделяют жидкости, обменивающиеся теплом, с помощью пластин.У них обычно есть улучшенные поверхности, такие как ребра или тиснение, и они скреплены болтами, припаяны или сварены. Пластинчатые теплообменники в основном используются в криогенной и пищевой промышленности. Однако из-за высокого отношения площади поверхности к объему, малого количества жидкостей и способности обрабатывать более двух паров они также начинают использоваться в химической промышленности.

Пластинчатые и рамные теплообменники состоят из двух прямоугольных концевых элементов, которые удерживают вместе несколько тисненых прямоугольных пластин с отверстиями на углах для прохождения жидкостей.Каждая из пластин разделена прокладкой, которая герметизирует пластины и обеспечивает поток жидкости между пластинами, см. Рис. 9. Этот тип теплообменника широко используется в пищевой промышленности, поскольку его можно легко разобрать для очистки. Если утечка в окружающую среду вызывает беспокойство, можно сварить две пластины вместе, чтобы гарантировать, что жидкость, протекающая между сваренными пластинами, не сможет протечь. Однако, поскольку некоторые прокладки все еще присутствуют, утечка все еще возможна. Паяные пластинчатые теплообменники предотвращают возможность утечки за счет пайки всех пластин вместе, а затем приваривания входных и выходных отверстий.

Рисунок 6. Классификация трубчатых теплообменников.

Рисунок 7. Классификация пластинчатого теплообменника.

Рисунок 8. Кожухотрубный теплообменник.

Рисунок 9. Пластинчато-рамный теплообменник.

Пластинчато-ребристые теплообменники состоят из ребер или прокладок, зажатых между параллельными пластинами. Ребра могут быть расположены так, чтобы допускать любую комбинацию поперечного или параллельного потока между соседними пластинами. Также возможно пропустить до 12 потоков жидкости через один теплообменник за счет тщательного расположения коллекторов.Обычно они изготавливаются из алюминия или нержавеющей стали и спаяны вместе. Их основное применение - сжижение газа из-за их способности работать с близкими температурами.

Пластинчатые теплообменники в некоторых отношениях аналогичны кожухотрубным. Прямоугольные трубы со скругленными углами уложены друг на друга, образуя пучок, который помещается внутри оболочки. Одна жидкость проходит через трубки, тогда как жидкость течет параллельно через промежутки между трубками.Они, как правило, используются в целлюлозно-бумажной промышленности, где требуются большие проточные каналы.

Спиральные пластинчатые теплообменники образуются путем наматывания двух плоских параллельных пластин вместе в змеевик. Затем концы уплотняются прокладками или свариваются. Они в основном используются с вязкими, сильно загрязняющими жидкостями или жидкостями, содержащими частицы или волокна.

В этой категории теплообменников не используется поверхность теплопередачи, из-за чего она часто дешевле, чем косвенные теплообменники.Однако, чтобы использовать теплообменник прямого контакта с двумя жидкостями, они должны быть несмешиваемыми, или, если будет использоваться одна жидкость, она должна претерпеть фазовый переход. (См. Прямая контактная теплопередача.)

Наиболее легко узнаваемая форма теплообменника с прямым контактом - градирня с естественной тягой, которая используется на многих электростанциях. Эти агрегаты состоят из большой примерно цилиндрической оболочки (обычно более 100 м в высоту) и насадки внизу для увеличения площади поверхности. Охлаждаемая вода распыляется на набивку сверху, в то время как воздух проходит через дно набивки и поднимается вверх через башню за счет естественной плавучести.Основная проблема с этим и другими типами градирен с прямым контактом - это постоянная необходимость восполнения подачи охлаждающей воды за счет испарения.

Конденсаторы прямого контакта иногда используются вместо трубчатых конденсаторов из-за их низких капитальных затрат и затрат на обслуживание. Есть много вариантов конденсатора прямого контакта. В простейшей форме охлаждающая жидкость разбрызгивается сверху емкости над паром, поступающим сбоку емкости. Затем конденсат и охлаждающая жидкость собираются внизу.Большая площадь поверхности распылителя гарантирует, что они являются достаточно эффективными теплообменниками.

Закачка пара используется для нагрева жидкости в резервуарах или в трубопроводах. Пар способствует передаче тепла за счет турбулентности, создаваемой впрыском, и передает тепло за счет конденсации. Обычно попытки собрать конденсат не предпринимаются.

Прямой нагрев в основном используется в сушилках, где влажное твердое вещество сушится путем пропускания его через поток горячего воздуха. Другой вид прямого нагрева - это горение под водой.Он был разработан в основном для концентрирования и кристаллизации коррозионных растворов. Жидкость испаряется пламенем, а выхлопные газы направляются вниз в жидкость, которая находится в резервуаре.

Воздухоохладитель с мокрой поверхностью в некоторых отношениях похож на теплообменник с воздушным охлаждением. Однако в устройствах этого типа вода распыляется по трубкам, а вентилятор всасывает воздух и воду через пучок труб. Вся система закрыта, и теплый влажный воздух обычно выводится в атмосферу.

Скребковые теплообменники состоят из емкости с рубашкой, через которую проходит жидкость, и вращающегося скребка, который непрерывно удаляет отложения с внутренних стенок емкости. Эти агрегаты используются в пищевой и фармацевтической промышленности в тех случаях, когда отложения образуются на нагретых стенках сосуда с рубашкой.

Статические регенераторы или регенераторы с неподвижным слоем не имеют движущихся частей, кроме клапанов. В этом случае горячий газ проходит через матрицу в течение фиксированного периода времени, в конце которого происходит реверсирование, горячий газ отключается, а холодный газ проходит через матрицу.Основная проблема с этим типом агрегатов заключается в том, что и горячий, и холодный поток прерывистый. Чтобы преодолеть это и обеспечить непрерывную работу, требуются по крайней мере два статических регенератора или можно использовать роторный регенератор.

В роторном регенераторе насадка цилиндрической формы вращается вокруг оси цилиндра между парой газовых уплотнений. Горячий и холодный газ протекает одновременно через воздуховоды с обеих сторон газовых уплотнений и через вращающуюся насадку. (См. Рекуперативные теплообменники.)

Термический анализ любого теплообменника включает решение основного уравнения теплопередачи.

(1)

Это уравнение рассчитывает количество тепла, передаваемого через область dA, где T h и T c - местные температуры горячей и холодной жидкости, α - местный коэффициент теплопередачи, а dA - местная дополнительная площадь, на которой α основывается. Для плоской стены

(2)

где δ w - толщина стенки, а λ w - ее теплопроводность.

Для однофазного обтекания стенки α для каждого из потоков является функцией Re и Pr. Когда происходит конденсация или кипение, α также может зависеть от разницы температур. Как только коэффициент теплопередачи для каждого потока и стены известен, общий коэффициент теплопередачи U определяется как

(3)

где сопротивление стенки r w равно 1 / α w . Общая скорость теплопередачи между горячей и холодной текучими средами тогда определяется выражением

(4)

Это уравнение предназначено для постоянных температур и коэффициентов теплопередачи.В большинстве теплообменников это не так, поэтому используется другая форма уравнения

(5)

где - общая тепловая нагрузка, U - средний общий коэффициент теплопередачи, а ΔT M - средняя разница температур. Расчет ΔT M и отказ от предположения о постоянном коэффициенте теплопередачи описаны в разделе «Средняя разница температур».

Расчет U и ΔT M требует информации о типе теплообменника, геометрии (например,g., размер проходов в пластине или диаметр трубы), ориентация потока, чистый противоток или поперечный поток и т. д. Затем можно рассчитать общую нагрузку с использованием предполагаемого значения AT и сравнить с требуемой нагрузкой. Затем можно внести изменения в предполагаемую геометрию и U, ΔT M и пересчитать, чтобы в конечном итоге перейти к решению, которое равно требуемой нагрузке. Однако при выполнении термического анализа на каждой итерации также следует проверять, не превышен ли допустимый перепад давления.Компьютерные программы, такие как TASC от HTFS (Heat Transfer and Fluid Flow Service), автоматически выполняют эти вычисления и оптимизируют конструкцию.

Механические аспекты

Все типы теплообменников должны подвергаться механической конструкции в той или иной форме. Любой теплообменник, работающий при давлении выше атмосферного, должен быть спроектирован в соответствии с местным кодом конструкции сосуда под давлением , например ASME VIII (Американское общество инженеров-механиков) или BS 5500 (Британский стандарт).Эти нормы определяют требования к сосудам высокого давления, но не касаются каких-либо специфических особенностей конкретного типа теплообменника. В некоторых случаях для определенных типов теплообменников существуют специальные стандарты. Два из них перечислены ниже, но в целом отдельные производители определяют свои собственные стандарты.

ССЫЛКИ

Гарланд, У. Дж. (1990) Частное сообщение.

Уокер, Г. (1982) Industrial Heat Exchangers-A Basic Guide , Hemisphere Publishing Corporation.

Rohsenow, W. M. и Hartnett, J. P. (1973) Handbook of Heat Transfer , New York: McGraw-Hill Book Company. DOI: 10.1016 / 0017-9310 (75)

-9

Сондерс, Э. А. Д. (1988) Теплообменники - выбор, проектирование и строительство, Longman Scientific and Technical. DOI: 10.1016 / 0378-3820 (89)

-5

Ассоциация производителей трубчатых теплообменников, (1988 г.) (ТЕМА), седьмое издание. Кожухотрубные теплообменники .

Американский институт нефти (API) 661: Теплообменники с воздушным охлаждением для нефтяной промышленности .

.

Смотрите также